Laws of Exponents

Repeated multiplication can be written in exponential form

In general, if *a* is a real number, variable, or algebraic expression and *n* is a positive integer, then: $a^n = a \bullet a$...*a*

n factors

where *n* is the exponent and *a* is the base. The expression a^n is read "*a* to the n^{th} power." An exponent can be negative as well.

Properties for exponents:

Property 1: $a^m \times a^n = a^{m+n}$ Example 1: $a^2 \times a^3 = (a \times a) \times (a \times a \times a) = a^5$

Property 2: $a^m \div a^n = a^{m-n}$ Example 2: $a^7 \div a^4 = \frac{a \times a \times a \times a \times a \times a \times a}{a \times a \times a \times a} = a^3$

Property 3: $(a^m)^n = a^{m \cdot n}$ Example 3: $(a^3)^4 = (a \times a \times a) \times (a \times a \times a) \times (a \times a \times a) = a^{12}$

Remark: It is important to recognize the difference between expressions such as $(-2)^4$ and -2^4 . In $(-2)^4$, the parenthesis indicate that the exponent applies to the negative sign as well as to the 2, but in $-2^4 = -(2^4)$, the exponent applies only to the 2. So, $(-2)^4 = 16$, whereas $-2^4 = -16$.

Some special cases

It can be sown that the three rules above are true for any values of m and n, provided that $a \neq 0$, but it is not possible for us to prove this yet. However, by using powers which are whole numbers we can see how some particular cases will have to go.

1- $a^5 \div a^4 = \frac{a \times a \times a \times a \times a}{a \times a \times a \times a} = a^1 = a$ by rule 2: $a^5 \div a^4 = a^{5-4} = a$ So we must have: $a^1 = a$

2-
$$a^4 \div a^4 = \frac{a \times a \times a \times a}{a \times a \times a \times a} = 1$$
 by rule 2: $a^4 \div a^4 = a^{4-4} = a^0$
So, we must have: $a^0 = 1$

Mathelpers.com

Grade 10

Mathelpers

3- $a^3 \div a^4 = \frac{a \times a \times a}{a \times a \times a \times a} = \frac{1}{a}$ by rule 2: $a^3 \div a^4 = a^{3-4} = a^{-1}$ So, we must have: $a^{-1} = \frac{1}{a}$

In fact, more generally, $a^{-n} = \frac{1}{a^n}$

4- $a^{\frac{1}{2}} \times a^{\frac{1}{2}} = a^1$ by rule 1: $a^1 = a$ So $a^{\frac{1}{2}}$ is the number which multiplied by itself gives a

 $a^{\frac{1}{2}}$ means the square root of a

Similarly, $a^{\frac{1}{3}} \times a^{\frac{1}{3}} \times a^{\frac{1}{3}} = a^1$ by rule (1)

So, $a^{\frac{1}{3}}$ means the cube root of a, or $\sqrt[3]{a}$ and $a^{\frac{1}{n}}$ means the n^{th} root of a, or $\sqrt[n]{a}$

Example 1: Write the following expressions without negative exponents and then evaluate

1)
$$7^{-3} = \frac{1}{7^3} = \frac{1}{343}$$

2) $\left(\frac{3}{2}\right)^{-2} = \frac{3^{-2}}{2^{-2}} = \frac{2^2}{3^2} = \frac{4}{9}$ or $\frac{1}{\left(\frac{3}{2}\right)^2} = \frac{1}{\frac{3^2}{2^2}} = \frac{1}{\frac{9}{4}} = \frac{4}{9}$

Example 2: Simplify
1)
$$\left(\frac{1}{16}\right)^{\frac{3}{4}} \div \left(\frac{1}{16}\right)^{\frac{1}{4}}$$
.
 $\left(\frac{1}{16}\right)^{\frac{3}{4}} \div \left(\frac{1}{16}\right)^{\frac{1}{4}}$
 $= \left(\frac{1}{16}\right)^{\frac{3}{4} - \frac{1}{4}}$
 $= \left(\frac{1}{16}\right)^{\frac{1}{2}}$
 $= \sqrt{\frac{1}{16}} = \frac{1}{4}$

Apply the quotient rule

Simplify

Express in radical form

Mathelpers.com

Mathelpers

Apply the product of a product rule Simplify Simplify Write in radical form Simplify

Change to exponential form

Apply the quotient rule

Simplify

Write in radical form

Simplify

Mathelpers.com

Mathelpers

Apply the power of a product rule

Simplify

Simplify

