Mathelpers

Laws of Exponents

Repeated multiplication can be written in exponential form
In general, if a is a real number, variable, or algebraic expression and n is a positive integer, then:
$a^{n}=\underbrace{a \bullet a \bullet a \bullet a \bullet a \bullet a \ldots a}$
where n is the exponent and a is the base. The expression a^{n} is read " a to the $n^{t h}$ power." An exponent can be negative as well.

Properties for exponents:

Property 1: $a^{m} \times a^{n}=a^{m+n}$
Example 1: $a^{2} \times a^{3}=(a \times a) \times(a \times a \times a)=a^{5}$
Property 2: $a^{m} \div a^{n}=a^{m-n}$
Example 2: $a^{7} \div a^{4}=\frac{a \times a \times a \times a \times a \times a \times a}{a \times a \times a \times a}=a^{3}$
Property 3: $\left(a^{m}\right)^{n}=a^{m \bullet n}$
Example 3: $\left(a^{3}\right)^{4}=(a \times a \times a) \times(a \times a \times a) \times(a \times a \times a) \times(a \times a \times a)=a^{12}$

Remark: It is important to recognize the difference between expressions such as (-2$)^{4}$ and -2^{4}. In $(-2)^{4}$, the parenthesis indicate that the exponent applies to the negative sign as well as to the 2 , but in $-2^{4}=-\left(2^{4}\right)$, the exponent applies only to the 2 . So, $(-2)^{4}=16$, whereas $-2^{4}=-16$.

Some special cases

It can be sown that the three rules above are true for any values of m and n, provided that $a \neq 0$, but it is not possible for us to prove this yet. However, by using powers which are whole numbers we can see how some particular cases will have to go.

1- $a^{5} \div a^{4}=\frac{a \times a \times a \times a \times a}{a \times a \times a \times a}=a^{1}=a \quad$ by rule $2: a^{5} \div a^{4}=a^{5-4}=a$
So we must have: $a^{1}=a$

2- $a^{4} \div a^{4}=\frac{a \times a \times a \times a}{a \times a \times a \times a}=1$
by rule $2: a^{4} \div a^{4}=a^{4-4}=a^{0}$
So, we must have: $a^{0}=1$

3- $a^{3} \div a^{4}=\frac{a \times a \times a}{a \times a \times a \times a}=\frac{1}{a}$
by rule 2 : $a^{3} \div a^{4}=a^{3-4}=a^{-1}$
So, we must have: $a^{-1}=\frac{1}{a}$
In fact, more generally, $a^{-n}=\frac{1}{a^{n}}$

4- $a^{1 / 2} \times a^{1 / 2}=a^{1}$
by rule 1: $a^{1}=a$
So $a^{1 / 2}$ is the number which multiplied by itself gives a
$a^{1 / 2}$ means the square root of a
Similarly, $a^{1 / 3} \times a^{1 / 3} \times a^{1 / 3}=a^{1} \quad$ by rule (1)
So, $a^{1 / 3}$ means the cube root of a, or $\sqrt[3]{a}$ and $a^{1 / n}$ means the $n^{\text {th }}$ root of a, or $\sqrt[n]{a}$

Example 1: Write the following expressions without negative exponents and then evaluate

1) $7^{-3}=\frac{1}{7^{3}}=\frac{1}{343}$
2) $\left(\frac{3}{2}\right)^{-2}=\frac{3^{-2}}{2^{-2}}=\frac{2^{2}}{3^{2}}=\frac{4}{9}$ or $\frac{1}{\left(\frac{3}{2}\right)^{2}}=\frac{1}{\frac{3^{2}}{2^{2}}}=\frac{1}{\frac{9}{4}}=\frac{4}{9}$

Example 2: Simplify

1) $\left(\frac{1}{16}\right)^{\frac{3}{4}} \div\left(\frac{1}{16}\right)^{\frac{1}{4}}$.

$$
\begin{array}{ll}
\left(\frac{1}{16}\right)^{\frac{3}{4}} \div\left(\frac{1}{16}\right)^{\frac{1}{4}} & \text { Apply the quotient rule } \\
=\left(\frac{1}{16}\right)^{\frac{3}{4}-\frac{1}{4}} & \text { Simplify } \\
=\left(\frac{1}{16}\right)^{\frac{1}{2}} & \text { Express in radical form } \\
=\sqrt{\frac{1}{16}}=\frac{1}{4} &
\end{array}
$$

2) $-\left(9^{\frac{5}{4}}\right)^{\frac{6}{5}}$.
$-\left(9^{\frac{5}{4}}\right)^{\frac{6}{5}}$
$=-(9)^{\frac{5}{4} \times \frac{6}{5}} \quad$ Apply the product of a product rule
$=-9^{\frac{6}{4}}$
$=-9^{\frac{3}{2}}$
$=-(\sqrt{9})^{3}$
$=-3^{3}=-27$
Simplify
Simplify
Write in radical form
Simplify
3) $\frac{\left(\sqrt[5]{\frac{1}{-32}}\right)^{3}}{\sqrt[5]{\frac{1}{-32}}}$.
$\frac{\left(\sqrt[5]{\frac{1}{-32}}\right)^{3}}{\sqrt[5]{\frac{1}{-32}}}$
$=\frac{\left(\frac{1}{-32}\right)^{\frac{3}{5}}}{\left(\frac{1}{-32}\right)^{\frac{1}{5}}}$
$=\left(\frac{1}{-32}\right)^{\frac{3}{5}-\frac{1}{5}}$
$=\left(\frac{1}{-32}\right)^{\frac{2}{5}}$
$=\left(\sqrt[5]{\frac{1}{-32}}\right)^{2}$
$=\left(\frac{1}{-2}\right)^{2}=\frac{1}{4}$
Change to exponential form

Apply the quotient rule

Simplify

Write in radical form

Simplify
4) $\left(x^{\frac{3}{4}} \cdot y^{\frac{2}{3}}\right)^{\frac{6}{7}}$

$$
\left(x^{\frac{3}{4}} \cdot y^{\frac{2}{3}}\right)^{\frac{6}{7}}
$$

$$
=x^{\frac{3}{4} \times \frac{6}{7}} \cdot y^{\frac{2}{3} \times \frac{6}{7}} \quad \text { Apply the power of a product rule }
$$

$$
=x^{\frac{9}{14}} \cdot y^{\frac{4}{7}} \quad \text { Simplify }
$$

$$
=x^{\frac{9}{14}} y^{\frac{4}{7}} \quad \text { Simplify }
$$

Example 3: Simplify the expression and evaluate if $x=256$.

$$
\begin{array}{ll}
\left(\frac{x^{\frac{3}{4}}}{x^{\frac{1}{4}}}\right)^{\frac{1}{2}} & \\
=\left(\frac{x^{\frac{3}{8}}}{x^{\frac{1}{8}}}\right)^{\frac{1}{2}} & \text { Apply the power of a qu } \\
=x^{\frac{1}{4}} & \text { Apply the quotient rule } \\
=(256)^{\frac{1}{4}} & \text { Substitute } x=256 \\
=\sqrt[4]{256}=4 & \text { Write in radical form }
\end{array}
$$

