Inscribed Angles and Their Measures

Recall that a polygon can be inscribed in a circle. An angle can also be inscribed in a circle. An inscribed angle is an angle whose vertex is on the circle and whose sides contain chords of the circle. Angle JKL is an inscribed angle.

Notice that K, the vertex of $\angle J K L$, lies on the circle of C. The sides of
 $\angle J K L$ contain chords $L K$ and $J K$. Therefore, $\angle J K L$ is an inscribed angle.
Each side of the inscribed angle intersects the circle at a point. The two points J and L form an arc.
We say that $\angle J K L$ intercepts $J L$, or that $J L$ is the intercepted arc of $\angle J K L$.
Definition 1: An angle is inscribed if and only if its vertex lies on the circle and its sides contain chords of the circle.
$\angle R S T$ is an inscribed angle because S belongs to the circle and $\overline{S R}$ and $\overline{S T}$

The diagram below shows the different parts that are related to inscribed angle.

Theorem 1: Inscribed Angle Theorem: If an angle is inscribed in a circle, then its measure equals one-half the measure of its intercepted arc (or the measure of the intercepted arc is twice the measure of the inscribed angle).

$$
\begin{aligned}
& m \angle P Q R=\frac{1}{2}(m P R) \\
& 2(m \angle P Q R)=m P R
\end{aligned}
$$

Example 1: Refer to the diagram below to find the required measures:

1) If $m J K=80^{\circ}$, find $m \angle J M K$.

$$
m \angle J M K=\frac{1}{2}(m J K)=\frac{1}{2}\left(80^{\circ}\right)=40^{\circ} \quad \text { (Inscribed angle theorem) }
$$

2) If $m \angle M K S=56^{\circ}$, find $m M S$.

$$
m M S=2(m \angle M K S)=2\left(56^{\circ}\right)=112^{0} \quad \text { (Inscribed angle theorem) }
$$

Arc - Intercept Corollary: If two inscribed angles of a circle (or congruent circles) intercept congruent arcs or the same arc, then the angles are congruent.

$$
\begin{aligned}
& \text { Inscribed } \angle \text { 's of } \cong \text { arcs are } \cong . ~ \\
& \text { Inscribed } \angle \text { 's of same arc are } \cong .
\end{aligned}
$$

$$
\angle 1 \cong \angle 2
$$

Suppose $\angle M T D$ is inscribed in $\square C$ and intercepts semicircle $M Y D$. Since $m M Y D=180^{\circ}, m \angle M T D=\frac{1}{2} \bullet 180^{\circ}=90^{\circ}$.
Therefore, $\angle M T D$ is a right angle.

Right Angle Corollary: If an inscribed angle of a circle intercepts a semicircle, then the angle is a right angle.
$P R$ is a semicircle

$$
\begin{aligned}
& \Rightarrow m P R=180^{\circ} \\
& \Rightarrow m \angle P A R=90^{\circ}
\end{aligned}
$$

Definition 2: A quadrilateral is said to be a cyclic quadrilateral if there is a circle passing through all its four vertices.

Cyclic Quadrilateral Theorem: If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.

Example 2:

Given: A cyclic quadrilateral $A B C D$
Prove: $m \angle B A D+m \angle B C D=m \angle A B C+m \angle A D C=180^{\circ}$

Statements	Reasons
1) $m \angle A C B=m \angle A D B$	1) Angles in the same segment
2) $m \angle B A C=m \angle B D C$	2) Angles in the same segment
3) $m \angle A C B+m \angle B A C=m \angle A D B+m \angle B D C$	3) Addition postulate
But $\angle A D B$ and $\angle B D C$ are adjacent angles	
4) $\angle A D B+\angle B D C=\angle A D C$	4)Angle Sum theorem
5) $m \angle A C B+m \angle B A C=m \angle A D C$	5)Substitution
6) $m \angle A C B+m \angle B A C+m \angle A B C=m \angle A D C+m \angle A B C$	6)Adding $\angle A B C$ to both sides
7) $m \angle A C B+m \angle B A C+m \angle A B C=180^{\circ}$	7) Triangle Sum Theorem
8) $m \angle A D C+m \angle A B C=180^{\circ}$	8)Substitution
9) $m \angle B A D+m \angle B C D+m \angle A D C+m \angle A B C=360^{\circ}$	9)Interior Angles theorem
10) $m \angle B A D+m \angle B C D=360^{\circ}-(m \angle A D C+m \angle A B C)$	
$m \angle B A D+m \angle B C D=180^{\circ}$	

Converse of Cyclic Quadrilateral Theorem: If a pair of opposite angles of a quadrilateral is supplementary, then the quadrilateral is cyclic.

Example 3: $A B C D$ is a cyclic parallelogram. Show that it is a rectangle.

Given: $A B C D$ is a cyclic parallelogram
Prove: $A B C D$ is a rectangle
Proof:

1) $m \angle B A D+m \angle B C D=180^{\circ}$	1) ABCD is a cyclic quadrilateral
2) $\angle B A D \cong \angle B C D$	2) Opposite angles of a parm
3) $m \angle B A D+m \angle B A D=180^{\circ}$	3) Substitution
4) $2 m \angle B A D=180^{\circ}$	
5) $m \angle B A D=90^{\circ}$	6) A parm with one right angle is a rectangle
6) ABCD is a rectangle	

