Name:

Factoring Special Products

Factor the following polynomials. 1)

1)
$$x^3 + 64$$

3)
$$p^3 - 27$$

5)
$$x^3 - y^3$$

7)
$$125a^3 - 8b^3$$

2)
$$m^3 - 1$$

4)
$$x^3 + 125$$

6)
$$c^3 + d^3$$

8)
$$64x^3 - 27y^3$$

2) Factor the following polynomials.

1)
$$2x^2 - 18$$

3)
$$-5x^4 + 20x^2$$

5)
$$9x^5 - 100x^3$$

2)
$$-8x^2 + 8$$

4)
$$3x^3 - 75x$$

6)
$$49x^{12} - 64x^{10}$$

3) Find the value of *c* that makes each trinomial a perfect square.

1)
$$r^2 + 16r + c$$

2)
$$k^2 + 12k + c$$

3)
$$p^2 + 4p + c$$

4)
$$n^2 + 2n + c$$

5)
$$f^2 + 8f + c$$

$$f^2 + 8f + c$$
 6) $s^2 - 18s + c$

7)
$$x^2 - 20x + c$$

8)
$$r^2 - 14r + c$$

9)
$$w^2 + 30w + c$$

10)
$$h^2 + 10h + c$$

11)
$$z^2 + 2z + c$$

12)
$$m^2 - 6m + c$$

13)
$$q^2 + 26q + c$$

14)
$$t^2 + 28t + c$$

15)
$$y^2 + 22y + c$$

16)
$$z^2 + 24z + c$$

- 4) Tavon drew plans for a square shed to put in his backyard. He then decided that he didn't want the shed to be square, so he reduced one dimension by a number and increased the other dimension by that same number. The new area of the shed floor is x^2-16 . Factor this expression.
- The area of a triangle is given by the expression $\frac{1}{2}bh$, where b represents the length of the base and h represents the height. Suppose a right triangle has a base that measures x 3 units and a height of x + 3 units.

- 1) Express the area of the triangle as a difference of two monomials.
- 2) Find the area of the triangle if x = 5.