Name:

\qquad

Factoring Special Products

1) Factor the following polynomials.
2) $x^{3}+64$
3) $m^{3}-1$
4) $p^{3}-27$
5) $x^{3}+125$
6) $x^{3}-y^{3}$
7) $c^{3}+d^{3}$
8) $125 a^{3}-8 b^{3}$
9) $64 x^{3}-27 y^{3}$
10) Factor the following polynomials.
11) $2 x^{2}-18$
12) $-8 x^{2}+8$
13) $-5 x^{4}+20 x^{2}$
14) $3 x^{3}-75 x$
15) $9 x^{5}-100 x^{3}$
16) $49 x^{12}-64 x^{10}$
17) Find the value of c that makes each trinomial a perfect square.

1)	$r^{2}+16 r+c$	2)	$k^{2}+12 k+c$
3)	$p^{2}+4 p+c$	4)	$n^{2}+2 n+c$
5)	$f^{2}+8 f+c$	6)	$s^{2}-18 s+c$
7)	$x^{2}-20 x+c$	8)	$r^{2}-14 r+c$
9)	$w^{2}+30 w+c$	10)	$h^{2}+10 h+c$
11)	$z^{2}+2 z+c$	12)	$m^{2}-6 m+c$
13)	$q^{2}+26 q+c$	14)	$t^{2}+28 t+c$
15)	$y^{2}+22 y+c$	16)	$z^{2}+24 z+c$

4) Tavon drew plans for a square shed to put in his backyard. He then decided that he didn't want the shed to be square, so he reduced one dimension by a number and increased the other dimension by that same number. The new area of the shed floor is $x^{2}-16$. Factor this expression.
5) The area of a triangle is given by the expression $\frac{1}{2} b h$, where b represents the length of the base and h represents the height. Suppose a right triangle has a base that measures $x-3$ units and a height of $x+3$ units.

6) Express the area of the triangle as a difference of two monomials.
7) Find the area of the triangle if $x=5$.
