Congruent Triangles

You know that congruent segments have the same length and congruent angles have the same degree measure. In the following activity, you will learn about congruent triangles are related.

Activity 1 :

Step 1: On a piece of grid paper, draw two triangles like the ones below.
Step 2: Cut out the triangles. Put one triangle over the other so that the parts with the same measures match up.

1. Identify all of the pairs of angles and sides that match or correspond.
2. $\sqcup A B C$ is congruent to $\sqcup F D E$. What is true about their corresponding sides and angles?

If a triangle can be translated, rotated, or reflected onto another triangle so that all of the vertices correspond, the triangles are congruent triangles. The parts of congruent triangles that "match "are called corresponding parts.

Definition 1: Definition of Congruent Triangles:

If the corresponding parts of two triangles are congruent, then the two triangles are congruent. If two triangles are congruent, then the corresponding parts of the two triangles are congruent. Activity 2: Construct $\square D F E$; given $\square A B C$ and $\overline{A B} \cong \overline{D F}, \overline{B C} \cong \overline{F E}, \overline{A C} \cong \overline{D E}$

Step 1: Draw an acute scalene triangle on a piece of paper. Label its vertices A, B, and C on the interior of each angle.

Step 2: Construct a segment congruent to $\overline{A C}$. Label the endpoints of the segment D and E.

Step 3: Adjust the compass setting to the length of $\overline{A B}$. Place the compass at point D and draw a large arc above $\overline{D E}$.

Step 4: Adjust the compass setting to the length of $\overline{C B}$. Place the compass at point E and draw an arc above $D E$ to intersect the one drawn from point D. Label the intersection F.

Step 5: Draw $\overline{D F}$ and $\overline{E F}$.

In the previous activity, you constructed a congruent triangle by using only the measures of its sides. This activity suggests the following theorem.

Postulate 1: Side - Side - Side Postulate. "SSS Postulate": If three sides of one triangle are congruent to three corresponding sides of another triangle, then the triangles are congruent.

Definition 2: In a triangle, the angle formed by two given sides is called the included angle of the sides.

Postulate 2: Side - Angle - Side Postulate. "SAS Postulate": If two sides and the included angle of one triangle are congruent to the corresponding sides and included angle of another triangle, then the triangles are congruent.

$$
\text { If } \overline{A C} \cong \overline{R T}, \angle B A C \cong \angle S R T, \overline{A B} \cong \overline{R S} \text { then } \square A B C \cong R S T
$$

Definition 3: The side of a triangle that falls between two given angles is called the included side of the angles. It is the one side common to both angles.

Postulate 3: Angle - Side - Angle Postulate. "ASA Postulate": If two angles and the included side of one triangle are congruent to the corresponding angles and included side of another triangle, then the triangles are congruent.

The Angle-Angle-Side Theorem is derived from the ASA Postulate. In AAS, the S is not between the two given angles. Therefore, the S indicates a side that is not included between the two angles.

Mathelpers.com

Theorem 1: Angle - Angle - Side Theorem. "AAS Theorem": If two angles and a non-included side of one triangle are congruent to the corresponding two angles and non-included side of another triangle, then the triangles are congruent.

Example 1:

Given: $\angle A B C \cong \angle E D F$

$$
E F=A C
$$

$$
A B=D E
$$

Prove: $\square A B C \cong E D F$

Proof:

Statements	Reasons
In $\square A B C$ and $\square E D F$, we have:	
1) $A B=D E$	1) Given
2) $E F=A C$	2) Given
3) $\angle A B C \cong \angle E D F$	3) Given
4) $\square A B C \cong E D F$	4) SAS Postulate

Given: $\angle A C X \cong \angle B D X$
$B D=A C$
Prove: $\square A C X \cong B D X$
Proof

Statements Reasons

In $\square A C X$ and $\square B D X$, we have:	
1) $B D=A C$	1) Given
2) $\angle A C X \cong \angle B D X$	2) Given
3) $\angle A X C \cong \angle B X D$	3) Vertically Opposite Angles
4) $\square A C X \cong \square B D X$	4) AAS Theorem

When two triangles are congruent, each part of one triangle is congruent to the corresponding part of the other triangle. That's referred to as corresponding parts of congruent triangles are congruent, thus CPCTC.

Example 3:

Given: $\overline{A B}$ and $\overline{C D}$ bisect each other
Prove: $\overline{A D} \cong \overline{B C}$
Proof:

A D

Statements	Reasons
In $\square A P D$ and $\square B P C$, we have:	
1) $\overline{A B}$ bisects $\overline{C D}$	1) Given
2) P is the midpoint of	2) Def of Bisector
$\overline{C D}$	3) Def of a midpoint
3) $\overline{C P} \cong \overline{D P}$	4) Given
4) $\overline{C D}$ bisects $\overline{A B}$	5) Def of Bisector
5) \bar{P} is the midpoint of	6) Def of a midpoint
6) $\overline{A P} \cong \overline{B P}$	7) Vertically Opposite
7) $\angle A P D \cong \angle B P C$	8) ASA Postulate
8) $\square A P D \cong B P C$	9) CPCTC
9) $\overline{A D} \cong \overline{B C}$	

Example 4

Given: $\angle \mathrm{S} \cong \angle \mathrm{T}, \mathrm{PR}=\mathrm{PU}, \overline{S X} \cong \overline{T X}$
Prove: $\overline{S P} \cong \overline{T P}$
Proof:

Statements Reasons
$\left.\left.\begin{array}{|l|l|}\hline \text { In } \square A P D \text { and } \square B P C \text {, we have: } & \\ \hline \text { 1) } \angle \mathrm{S} \cong \angle \mathrm{T}, \overline{S X} \cong \overline{T X} & \text { 1) Given } \\ \hline \text { 2) } \angle \mathrm{SXR} \cong \angle \mathrm{TXU} & \begin{array}{l}\text { 2) } \begin{array}{l}\text { Vertical angles are } \\ \text { congruent }\end{array} \\ \hline \text { 3) } \Delta \mathrm{SXR} \cong \Delta \mathrm{TXU} \\ \hline \text { 4) } \overline{R S} \cong \overline{U T} \\ \hline \text { 5) } \mathrm{RS}=\mathrm{UT} \\ \hline \text { 6) } \mathrm{PR}=\mathrm{PU} \\ \hline \text { 7) } \mathrm{PR}+\mathrm{RS}=\mathrm{PU}+\mathrm{UT} \\ \hline \text { 8) } \mathrm{PR}+\mathrm{RS}=\mathrm{SP} \\ \mathrm{PU}+\mathrm{UT}=\mathrm{TP}\end{array} \\ \hline \text { 4) CPCTC Postulate }\end{array} \right\rvert\, \begin{array}{ll}\text { 5) } \cong \text { segments have }= \\ \text { lengths. }\end{array}\right]$

