Circles in the Coordinate Plane

The equation of a circle in a coordinate plane is written knowing the coordinates of its center and the length of the radius.

Let (x, y) be a point on the circle and let (h,k) be the coordinates of the center. Using the distance formula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \Longrightarrow r = \sqrt{(x - h)^2 + (y - x)^2}$$

Squaring both sides of the equation

$$\Rightarrow r^{2} = (x-h)^{2} + (y-x)^{2}$$

Definition 1: The equation of a circle of center (h,k) and radius r in standard form is:

$$r^{2} = (x-h)^{2} + (y-x)^{2}$$

In particular if the center is the origin i.e. O (0,0)

$$\Rightarrow r^{2} = (x-0)^{2} + (y-0)^{2} \Rightarrow r^{2} = x^{2} + y^{2}$$

Definition 2: The unit circle is the circle whose radius is equal to 1 and whose center is the origin i.e. $x^2 + y^2 = 1$ unit circle

Example 1: Find the equation of the circle whose vertex is the origin and whose radius is 3.

The vertex is the origin \Rightarrow (h,k) = (0,0)

 $\Rightarrow (x-h)^{2} + (y-x)^{2} = r^{2}$ $\Rightarrow (x-0)^{2} + (y-0)^{2} = 3^{2}$ $\Rightarrow x^{2} + y^{2} = 9$

Given a point and a center, the equation of the circle can be found by substituting the values of x, y, h and x to find the value of the radius r.

Example 2: Find the equation of the circle passing through A (2, 3) and with center P (-1,-2)

The distance from the center to a point on the circle is the radius

Graphing circles

If you know the equation of a circle, you can graph the circle by identifying its center and radius.

Example 3: The equation of a circle is $(x + 2)^2 + (y - 1)^2 = 9$. Graph the circle.

Compare the given equation with $(x-h)^2 + (y-k)^2 = r^2$, h = -2 and $k = 1 \implies$ center = P(-2,1)

 $r^2 = 9 \implies r = 3$

To graph the circle, place the point of a compass at (-2,1), set the radius at 3 units, and swing the compass to draw a full circle.

Example 4: The equation of circles is $(x-1)^2 + (y-5)^2 = 36$

- a. what are the coordinates of the center of the circles?
- b. What is the length of the radius of the circle?
- c. What are the coordinates of two points on the circle?

Compare the equation $(x-1)^2 + (y-5)^2 = 36$ to the general form of the equation of a circles: $(x-h)^2 + (y-k)^2 = r^2$

Therefore, h = 1, k = 5, $r^2 = 36$, and r = 6.

a. The coordinates of the center are (1,5).

Compare the given equation to $x^2 + y^2 = r^2$

 $r^{2} = 50$ $r = \pm \sqrt{50}$ $r = \pm \sqrt{25}\sqrt{2}$ $r = \pm 5\sqrt{2}$

- b. The length of the radius is 6.
- c. Points 6 units from (1,5) on the same horizontal line are (7,5) and (-7,5).
- d. Point 6 units from (1,5) on the same vertical line are (1,11) and (1, -1).

Example 5: The equation of a circle is $x^2 + y^2 = 50$. What is the length of the radius of the circle

Since a length is always positive,
$$r = 5\sqrt{2}$$

Example 6: Find the coordinates of the points at which the line y = 2x - 1 intersects a circle with center at (0,-1) and radius of length $\sqrt{20}$.

In the equation $(x - h)^2 + (y - k)^2 = r^2$ let h = 0, k = -1, and $r = \sqrt{20}$. The equation of the circle is: $(x-0)^2 + (y-(-1))^2 = (\sqrt{20})^2$ or $x^2 + (y+1)^2 = 20$ Find the common solution of $x^2 + (y+1)^2 = 20$ and y = 2x - 1

Mathelpers.com

The linear equation is solved for y	$x^2 + (y+1)^2 = 20$
In terms of x. substitute, in the	$x^2 = \left(2x - 1 + 1\right)^2 = 20$
Equation of the circle, the express	ion $x^2 + (2x)^2 = 20$
For y and simplify the result.	
Square the monomial:	$x^2 + 4x^2 = 20$
Write the equation in standard for	m: $5x^2 - 20 = 0$
Divide by the common factor, 5:	$x^2 - 4 = 0$
Factor the left side of the equation	n: $(x-2)(x+2) = 0$
Set each factor equal to zero:	$x - 2 = 0 \qquad \qquad x + 2 = 0$
Solve each equation for x:	$x = 2 \qquad \qquad x = -2$
For each value of x find the	$y = 2x - 1 \qquad \qquad y = 2x - 1$

Corresponding value of y:

y = 2(2) - 1	y = 2(-2) - 1
<i>y</i> = 3	y = -5

