Name:

\qquad

Circles in the Coordinate Plane

Exercise 1: Write an equation of each circle that has a diameter with the given point as center and the given value of r as the length of the radius.

1. $(0,0), r=3$
2. $(1,3), r=5$
3. $(-2,0), r=6$
4. $(4,-2), r=10$
5. $(6,0) r=9$
6. $(-3,-3), r=2$

Exercise 2: Write an equation of each circle that has a diameter with the given endpoints.

1. $(-2,0)$ and $(2,0)$
2. $(0,-4)$ and $(0,4)$
3. $(2,5)$ and 9,13$)$
4. $(-5,3)$ and $(3,3)$
5. $(5,12)$ qnd $(-5,12)$
6. $(-5,9)$ and $(-7,-7)$
7. $(-7,3)$ ans $(9,10)$
8. $(2,2)$ and $(18,-4)$

Exercise 3: Find the center of each circle and graph each circle.

1. $(x-2)^{2}+(y=5)^{2}=4$
2. $(x+4)^{2}+(y-4)=36$
3. $\left(x+\frac{3}{2}\right)^{2}+(y-1)^{2}=25$
4. $\left(x-\frac{5}{2}\right)^{2}+\left(y+\frac{3}{4}\right)^{2}=\frac{81}{25}$
5. $2 x^{2}+2 y^{2}=18$
6. $5(x-1)^{2}+5(y-1)^{2}=245$

Exercise 4: Point $C(2,3)$ is the center of a circle and $A(-3,-9)$ is a point on the circle. Write an equation of the circle.

Exercise 5: Does the point $(4,4)$ lie on the circle whose center is at the origin and whose radius is $\sqrt{32}$?
Justify your circle.
Exercise 6: Is $x^{2}+4 x+4+y^{2}-2 y+1=25$ the equation of a circle? Explain why or why not.

