Areas of Triangles and Quadrilaterals

Postulate: Area Addition Postulate: The area of a given polygon equals the sum of the areas of the non overlapping polygons that form the given polygon.

$$
A_{\text {total }}=A_{1}+A_{2}+A_{3}
$$

Look at the rectangle below. Its area is bh square units. The diagonal divides the rectangle into two congruent triangles. The area of each triangle is half the area of the rectangle, or $\frac{1}{2} b h$ square units.

Rule 1: Area of a triangle: If a triangle has an area of A square units, a base of b units, and a corresponding altitude of h units, then $A=\frac{1}{2} b h$

Example 1: Find the area of the triangle.

$$
A=\frac{1}{2} b h=\frac{1}{2}(19)(14)=133
$$

The area is $133 \mathrm{~cm}^{2}$

You can find the area of a trapezoid in a similar way like the area of a triangle. The altitude of a trapezoid h is a segment perpendicular to each base.

Rule 2: If a trapezoid has an area of A square units, bases of b_{1} and b_{2} units, and an altitude of b units, then
$A=\frac{1}{2} h\left(b_{2}+b_{1}\right)$

$$
A=\frac{1}{2} h\left(b_{2}+b_{1}\right)
$$

Every regular polygon has a center, a point in the interior that is equidistant from all the vertices. A segment drawn from the center that is perpendicular to a side of the regular polygon is called an apothem (AP- -them). In any regular polygon, all apothems are congruent.

Theorem 1: Area of a regular polygon
If a regular polygon has an area of A square units, an apothem of a units, and a perimeter of P units, then $A=\frac{1}{2} a P$

Example 2: Find the area of the shaded region in the regular polygon

Area of Pentagon
Perimeter $=P=5 s=5(8)=40 f t$
$A=\frac{1}{2} a P=\frac{1}{2}(5.5)(8)=110 f t^{2}$
Area of Triangle
$A=\frac{1}{2} b h=\frac{1}{2}(8)(5.5)=22 f t^{2}$
To find the area of the region, subtract the areas:
110-22 = 88. The area of the shaded region is 88 square feet.

