Arcs and Chords

Arc – Chord Theorem: In a circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

- In a circle, 2 minor arcs are $\cong \Rightarrow$ corresponding chords are \cong .

- In a circle, 2 chords are $\cong \Rightarrow$ corresponding minor arcs are \cong .

Example 1: The vertices of equilateral triangle *JKL* are located on a circle with center P. Identify all congruent minor arcs.

Given that \Box *JKL* is equilateral $\Rightarrow \overline{JK} \cong \overline{KL} \cong \overline{JL}$ (Def. of an equilateral triangle) $\Rightarrow JK \cong KL \cong JL$ (Minor arcs are $\cong \Rightarrow$ corresponding chords are \cong) Therefore, the congruent minor arcs are: *JK*, *KL*, and *JL*

Example 2: Proof of Theorem 1

Given: Circle with center X and radius \overline{XV}

$$UV \cong YW$$

Prove: $\overline{UV} \cong \overline{YW}$

Mathelpers

Proof:

Statements	Reasons
1) $UV \cong YW$	1) Given
$2) \angle UXV \cong \angle WXY$	2) If 2 arcs are $\cong \Rightarrow$ central angles are \cong
$3) \overline{UX} \cong \overline{VX} \cong \overline{WX} \cong \overline{YX}$	3) Radii of the same circles are \cong
4) $\Box UXV \cong \Box WXY$	4) SAS theorem
5) $\overline{UV} \cong \overline{YW}$	5) CPCTC

Radius – Chord Theorem: In a circle, if a diameter (or radius) is perpendicular to a chord, then it bisects the chord and its arc.

Converse of Radius – Chord Theorem: In a circle, a diameter bisects a chord and its arc if and only if it is perpendicular to the chord.

 $\overline{AR} \cong \overline{BR}$ and $\overline{AD} \cong \overline{BD}$ if and only if $\overline{CD} \perp \overline{AB}$

Mathelpers

Example 3: In the circle with center P, if $\overline{PM} \perp \overline{AT}$, PT = 10, and PM = 8, find AT.

\Box PMT is a right angle.	Def. of perpendicular		
\Box PMT is a right triangle.	Def. of right triangle	A 8 P	
(MT) 2 + (PM) 2 = (PT) 2	Pythagorean Theorem	M 10	
(MT) 2 + 8 2 = 10 2	Replace PM with 8 and PT	T	with 10.
$(MT)^{2} + 64 = 100$	8 ² = 64; 10 ² = 100		
(MT) 2 + 64 - 64 = 100 - 64	Subtract 64 from each side.		
$(MT)^{2} = 36$	Simplification		
$\sqrt{\left(MT\right)^2} = \sqrt{36}$	Take the square root of each side	2.	
MT = 6	Simplification		

 \overline{PM} bisects \overline{AT} . Therefore, AT=2(MT). So, AT=2(6)=12.

Example 4:

Proof:

Chord – Distance Theorem: In a circle or in congruent circles, two chords are congruent if and only if they are equidistant from the center.

$$\overline{AD} \cong \overline{BC} \Leftrightarrow \overline{LP} \cong \overline{PM}$$

$$\overline{LP} \perp \overline{AD}$$

$$\overline{PM} \perp \overline{BC}$$
Example 4:
Given: $C(0, OA) \cong C'(O', O'A')$ and
 $\angle COD \cong \angle AOB \cong \angle A'O'B'$
Prove: $\overline{CD} \cong \overline{AB} \cong \overline{A'B'}$

Mathelpers

Statements	Reasons
In [] AOB and [] COD, we have:	
1) $\angle COD \cong \angle AOB$	1) Given
2) $\overline{OA} \cong \overline{OB} \cong \overline{OC} \cong \overline{OD}$	Radii of the same circle are congruent
3) □ <i>AOB</i> ≅□ <i>COD</i>	3) SAS theorem
4) $\overline{CD} \cong \overline{AB}$	4) CPCTC
In $\Box A'O'B'$ and $\Box COD$, we have:	
5) $\angle COD \cong \angle A'O'B'$	5) Given
$6) \overline{O'A'} \cong \overline{O'B'} \cong \overline{OC} \cong \overline{OD}$	 Radii of the congruent circles are congruent
7) □ <i>A'O'B'</i> ≅□ <i>COD</i>	7) SAS theorem
8) $\overline{CD} \cong \overline{A'B'}$	8) CPCTC
9) $\overline{CD} \cong \overline{A'B'} \cong \overline{AB}$	9) Transitive property

Corollary: In a circle or in congruent circles, two chords are congruent if and only if their central angles are congruent. Example 5:

Given:
$$C(O, OA)$$
 with $\overline{AB} \cong \overline{CD}$, $\overline{OE} \perp \overline{AB}$, and $\overline{OF} \perp \overline{CD}_{,}$

Prove: $\overline{OE} \cong \overline{OF}$

Proof:

Statements	Reasons
1) $\overline{OE} \perp \overline{AB}$	1) Given
2) \overline{OE} bisects \overline{AB}	2) A line passing through the center and \perp to the chord bisects the chord and its arcs.
3) $\overline{EB} \cong \overline{EA}$	3) Def of a bisector
4) $\overline{OF} \perp \overline{CD}$	4) Given
5) \overline{OF} bisects \overline{CD}	5) A line passing through the center and \perp to the chord bisects the chord and its arcs.
6) $\overline{FD} \cong \overline{FC}$	6) Def of a bisector
7) But $\overline{AB} \cong \overline{CD}$	7) Given
8) $\overline{FD} \cong \overline{EB}$	8) Substitution
9) $\overline{OB} \cong \overline{OD}$	9) Radii of the same circle
10) $\Box OBE \cong \Box ODF$	10)HL Theorem
11) $\overline{OE} \cong \overline{OF}$	11)CPCTC

Corollary: In a circle, if the lengths of two chords are unequal, then the shorter chord is farther from the center.