Arcs and Chords

Arc - Chord Theorem: In a circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

- In a circle, 2 minor arcs are $\cong \Rightarrow$ corresponding chords are \cong.
- In a circle, 2 chords are $\cong \Rightarrow$ corresponding minor arcs are \cong.

$$
\begin{aligned}
& \text { If } \overline{A B} \cong \overline{C D} \Rightarrow A B \cong C D \\
& \text { and } \\
& \text { if } A B \cong C D \Rightarrow \overline{A B} \cong \overline{C D}
\end{aligned}
$$

Example 1: The vertices of equilateral triangle $J K L$ are located on a circle with center P . Identify all congruent minor arcs.

Given that $\sqcup J K L$ is equilateral
$\Rightarrow \overline{J K} \cong \overline{K L} \cong \overline{J L} \quad$ (Def. of an equilateral triangle)
$\Rightarrow J K \cong K L \cong J L \quad$ (Minor arcs are $\cong \Rightarrow$
corresponding chords are \cong)
Therefore, the congruent minor arcs are: $J K, K L$, and $J L$

Example 2: Proof of Theorem 1

Given: Circle with center X and radius $\overline{X V}$

$$
U V \cong Y W
$$

```
Prove: }\overline{UV}\cong\overline{YW
```


Statements	Reasons
1) $U V \cong Y W$	1) Given
2) $\angle U X V \cong \angle W X Y$	2) If 2 arcs are $\cong \Rightarrow$ central angles are \cong
3) $\overline{U X} \cong \overline{V X} \cong \overline{\cong X} \cong \overline{Y X}$	3) Radii of the same circles are \cong
4) $\square U X V \cong W X Y$	4) SAS theorem
5) $\overline{U V} \cong \overline{Y W}$	5) CPCTC

Radius - Chord Theorem: In a circle, if a diameter (or radius) is perpendicular to a chord, then it bisects the chord and its arc.
$\overline{B A}$ is a diameter and $\overline{T V}$ is a chord

$$
\overline{B A} \perp \overline{T V} \text { at } \cup \Rightarrow \overline{T U} \cong \overline{U V} \text { and }
$$

$$
T A \cong A V
$$

Converse of Radius - Chord Theorem: In a circle, a diameter bisects a chord and its arc if and only if it is perpendicular to the chord.

$$
\begin{aligned}
& \overline{A R} \cong \overline{B R} \text { and } \overline{A D} \cong \overline{B D} \text { if and only if } \\
& \overline{C D} \perp \overline{A B}
\end{aligned}
$$

Example 3: In the circle with center P , if $\overline{P M} \perp \overline{A T}, \mathrm{PT}=10$, and $\mathrm{PM}=8$, find AT .
\sqcup PMT is a right angle.
\sqcup PMT is a right triangle.
$(\mathrm{MT})^{2}+(\mathrm{PM})^{2}=(\mathrm{PT})^{2}$
$(\mathrm{MT})^{2}+8^{2}=10^{2}$
$(M T)^{2}+64=100$
$(M T)^{2}+64-64=100-64$
$(M T)^{2}=36$
$\sqrt{(M T)^{2}}=\sqrt{36}$
$M T=6$

Def. of perpendicular
Def. of right triangle
Pythagorean Theorem
Replace PM with 8 and PT

with 10.
$8^{2}=64 ; 10^{2}=100$
Subtract 64 from each side.

Simplification

Take the square root of each side.
Simplification
$\overline{P M}$ bisects $\overline{A T}$. Therefore, $\mathrm{AT}=2(\mathrm{MT})$. So, $\mathrm{AT}=2(6)=12$.

Chord - Distance Theorem: In a circle or in congruent circles, two chords are congruent if and only if they are equidistant from the center.

$$
\begin{aligned}
& \overline{A D} \cong \overline{B C} \Leftrightarrow \overline{L P} \cong \overline{P M} \\
& \overline{L P} \perp \overline{A D} \\
& \overline{P M} \perp \overline{B C}
\end{aligned}
$$

Example 4:

Given: $C(O, O A) \cong C^{\prime}\left(O^{\prime}, O^{\prime} A^{\prime}\right)$ and
$\angle C O D \cong \angle A O B \cong \angle A^{\prime} O^{\prime} B^{\prime}$
Prove: $\overline{C D} \cong \overline{A B} \cong \overline{A^{\prime} B^{\prime}}$

Proof:

Mathelpers

Statements	
In $\square A O B$ and $\square C O D$, we have:	
1) $\angle C O D \cong \angle A O B$	1) Given
2) $\overline{O A} \cong \overline{O B} \cong \overline{O C} \cong \overline{O D}$	2) Radii of the same circle are congruent
3) $\square A O B \cong \square C O D$	3) SAS theorem
4) $\overline{C D} \cong \overline{A B}$	4) CPCTC
In $\square A^{\prime} O^{\prime} B^{\prime}$ and $\square C O D$, we have:	
5) $\angle C O D \cong \angle A^{\prime} O^{\prime} B^{\prime}$	5) Given
6) $\overline{O^{\prime} A^{\prime}} \cong \overline{O^{\prime} B^{\prime}} \cong \overline{O C} \cong \overline{O D}$	6) Radii of the congruent circles are
7) $\square A^{\prime} O^{\prime} B^{\prime} \cong C O D$	7) SAS theorem
8) $\overline{C D} \cong \overline{A^{\prime} B^{\prime}}$	8) CPCTC
9) $\overline{C D} \cong \overline{A^{\prime} B^{\prime}} \cong \overline{A B}$	9) Transitive property

Corollary: In a circle or in congruent circles, two chords are congruent if and only if their central angles are congruent.

Example 5:

Given: $C(O, O A)$ with $\overline{A B} \cong \overline{C D}, \overline{O E} \perp \overline{A B}$, and $\overline{O F} \perp \overline{C D}$,
Prove: $\overline{O E} \cong \overline{O F}$

Proof:

1) $\overline{O E} \perp \overline{A B}$	1) Given
2) $\overline{O E}$ bisects $\overline{A B}$	2) A line passing through the center and \perp to the
chord bisects the chord and its arcs.	

Corollary: In a circle, if the lengths of two chords are unequal, then the shorter chord is farther from the center.

