Applications and Models

Part A: Applications involving right triangles

The three angles of a right triangle are denoted by the letters A, B, and C (where C is the right angle), and the lengths of the sides opposite to these angles by the letters a, b, and c (where c is the hypotenuse).

Example 1: Solve the right triangle shown below rounding all measurements to one decimal place (if necessary).

Identify the given information: $\angle A=51^{\circ} ; \angle C=90^{\circ} ; c=150 \mathrm{~m}$
Identify what needs to be found: $\angle B$; a; and b

1) Find $\angle B$:
$m \angle A+m \angle B+m \angle C=180^{\circ}$
$\Rightarrow 51^{\circ}+m \angle B+90^{\circ}=180^{\circ}$
$\Rightarrow m \angle B=39^{\circ}$

2) Find a

We know angle A and the hypotenuse, so the sine function can be used to determine the length of side a.
$\sin A=\frac{a}{c}$
$\Rightarrow \sin 51^{\circ}=\frac{a}{150}$
$\Rightarrow a=150\left(\sin 51^{\circ}\right)$
$\therefore a \approx 116.6 \mathrm{~m}$

3) Find b

Side b is adjacent to angle A and since we know the measurements of angle A and the hypotenuse the cosine function can now be used to find b.
$\cos A=\frac{b}{c}$
$\Rightarrow \cos 51^{\circ}=\frac{b}{150}$
$\Rightarrow b=150\left(\cos 51^{\circ}\right)$
$\therefore a \approx 94.4 m$
Example 2: Solve the right triangle shown below rounding all measurements to one decimal place (if necessary).

Identify the given information: $\angle C=90^{\circ} ; a=14 \mathrm{~cm}$; and $b=35 \mathrm{~cm}$
Identify what needs to be found: $\angle A ; \angle B$; and c

1) Find $\angle A$:

Since we know the measurements of sides a and b we can use the tangent function to find the measurement of angle A.
$\tan A=\frac{a}{b}$
$\Rightarrow \tan A=\frac{14}{35}$
$\Rightarrow A \approx 21.8^{0}$
2) Find $\angle B$
$m \angle A+m \angle B+m \angle C=180^{\circ}$
$\Rightarrow 21.8^{\circ}+m \angle B+90^{\circ}=180^{\circ}$
$\Rightarrow m \angle B=68.2^{0}$

3) Find c

Since we know the lengths of the sides a and b the Pythagorean Theorem can be used to find the length of the hypotenuse. You do not want to use a trigonometric function involving either of the two angles we just found because they have been rounded off. Using the original information given and the Pythagorean Theorem will provide a much better estimate of the length of the hypotenuse.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& \Rightarrow(14)^{2}+(35)^{2}=c^{2} \\
& \Rightarrow c^{2}=196+1225=1421 \\
& \Rightarrow c^{2}=1421 \\
& \Rightarrow c \approx 37.7 \mathrm{~cm}
\end{aligned}
$$

Example 3: A child who is 4 feet tall is standing 200 cm away from the center of the base of the Emirates Towers. If the child must look up at an angle of 75° to see the top of the tower, how tall is the Emirates Towers?

1) Find a

For the triangle involving a, we know both the measurements of angle A and the length of the side adjacent to it. Therefore, we can use the tangent function to determine a.
$\tan A=\frac{a}{b}$
$\Rightarrow \tan 75^{\circ}=\frac{a}{200}$
$\Rightarrow a=200\left(\tan 75^{\circ}\right)$
$\Rightarrow a \approx 746 \mathrm{~cm}$

2) Find h

The height of the Emirates Tower is equal to the value of a plus the height of the child.

$$
\begin{aligned}
& \mathrm{h}=4+\mathrm{a} \\
& \Rightarrow \mathrm{~h} \approx 4+746 \\
& \Rightarrow \mathrm{~h} \approx 750
\end{aligned}
$$

Angles of elevation and depression

In surveying, the angle of elevation is the angle from the horizontal looking up to some object:

The angle of depression is the angle from the horizontal looking down to some object:

Example 4: The angle of elevation of an airplane is 23°. If the airplane's altitude is 2500 m , how far away is it?

Let the distance be x.

$$
\begin{aligned}
& \sin 23^{0}=\frac{2500}{x} \\
& \Rightarrow x=\frac{2500}{\sin 23^{0}}=6400
\end{aligned}
$$

Application involving Bearings

In surveying and navigation, directions are generally given in terms of bearings. A bearing measures the acute angle that a path or line sight makes with a fixed north - south line.
There are two methods for expressing bearing.

1) Single Angle Given: When a single angle is given, it is understood that the bearing is measured in a clockwise direction from due north. In general in air navigation, bearings are measured in degrees clockwise from north.

2) The second method starts with a north-south line and uses an acute angle to show the direction, either east or west, from this line.

$583^{\circ} \mathrm{W}$

$\mathrm{N} 37^{\circ} \mathrm{E}$

Example 5: W $50^{\circ} \mathrm{S}$ means that you face west, and then veer off 50° to the south.

Other examples:

Example 6: A student leaves the campus on a bearing of $\mathrm{S} 55^{\circ} \mathrm{E}$ and travels 5 miles before turning on a bearing of $\mathrm{N} 35^{\circ} \mathrm{E}$. After traveling 10 miles on this new bearing what is the bearing of the student from the campus?

Draw diagram of the situation
Identify known information: Right triangle, Adjacent side (b) = 5, Opposite side (a) = 10 Identify what needs to be found: The angle A; The angle θ

1) Find angle A

Since the adjacent and opposite sides are known the tangent function is used to find the measurement of angle A
$\tan A=\frac{a}{b}$
$\Rightarrow \tan A=\frac{10}{5}$
$\Rightarrow A \approx 63.4^{0}$

2) Find angle θ

Angle θ, A and the 55° angle form a straight line and are therefore supplementary angles whose sum must equal 180°.
$m \angle \theta+m \angle A+55^{\circ}=180^{\circ}$
$\Rightarrow m \angle \theta+63.4^{0}+55^{\circ}=180^{\circ}$
$\Rightarrow m \angle \theta=61.6^{\circ}$
The student's bearing from the campus is $\mathrm{N} 61.6^{\circ} \mathrm{E}$.

