Angles Formed by Tangents, Chords, and Secants

In the diagram, \overrightarrow{AB} is tangent to the circle of center O at A, \overline{AD} is a chord, and \overline{AC} is a diameter. When \overline{CD} is drawn, $\angle ADC$ is a right angle because it is an angle inscribed in a semicircle, and $\angle ACD$ is the complement of $\angle CAD$. Also, $\overline{CA} \perp \overline{AB}$, $\angle BAC$ is a right angle, and $\angle DAB$ is the complement of $\angle CAD$. Therefore, since complements of the same angle are congruent, $\angle ACD \cong \angle DAB$.

We can conclude that since $m\angle ACD = \frac{1}{2}mAD$, then

$$m\angle DAB = \frac{1}{2}mAD$$

Theorem 1: The measure of an angle formed by a tangent and a chord that intersect at the point of tangency is equal to one – half the measure of the intercepted arc.

Angles Formed by Two Intersecting Chords

Two chords \overline{AB} and \overline{CD} intersect in the interior of the circle with center O and \overline{DB} is drawn. $\angle AED$ is an exterior angle of $\Box DEB$. Therefore,

$$m\angle AED = m\angle BDE + m\angle DBE$$
$$= \frac{1}{2}mBC + \frac{1}{2}mDA$$
$$= \frac{1}{2}(mBC + mDA)$$

BC is the arc intercepted by $\angle BEC$ and DA is intercepted by $\angle AED$, the angle vertical to $\angle BEC$.

Theorem 2: The measure of an angle formed by two chords intersecting within a circle is equal to one – half the sum of the measures of the arcs intercepted by the angle and its vertical angle.

$$m \angle 1 = \left(\frac{mAC + mDB}{2}\right)$$

$$m\angle 2 = \left(\frac{mAD + mBC}{2}\right)$$

Angles Formed by Tangents and Secants

We will study in this section three cases:

- 1- Angles formed by two tangents
- 2- Angles formed by a tangent and a secant
- 3- Angles formed by two secants

All of the angles formed in each of the three cases have vertices outside the circle, are related to the measures of the intercepted arcs.

1- Angles formed by two tangents

 \overrightarrow{PRS} is tangent to the circle of center O at R, \overrightarrow{PQ} is tangent to the circle at Q, and T is a point on the major arc RQ. Chord \overline{RQ} is drawn. Then $\angle SRQ$ is an exterior angle of $\Box RQP$.

$$m \angle PQR + m \angle P = m \angle SRQ$$

$$\Rightarrow m \angle P = m \angle SRQ - m \angle PQR$$

$$\Rightarrow m \angle P = \frac{1}{2} mRTQ - \frac{1}{2} mRQ$$

$$\Rightarrow m \angle P = \frac{1}{2} \left(mRTQ - mRQ \right)$$

2- Angles formed by a tangent and a secant

 \overrightarrow{PRS} is tangent to the circle of center O at R, \overrightarrow{PTQ} is a secant that intersects the circle at Q and T. Chord \overrightarrow{RQ} is drawn. Then $\angle SRQ$ is an exterior angle of $\Box PRQ$.

$$m \angle RQP + m \angle P = m \angle SRQ$$

$$\Rightarrow m \angle P = m \angle SRQ - m \angle RQP$$

$$\Rightarrow m \angle P = \frac{1}{2} mRQ - \frac{1}{2} mRT$$

$$\Rightarrow m \angle P = \frac{1}{2} \left(mRQ - mRT \right)$$

3- Angles formed by two secants

 \overrightarrow{PTR} is a secant to the circle of center O that intersects the circle at R and T, \overrightarrow{PQS} is a secant that intersects the circle at Q and S. Chord \overrightarrow{RQ} is drawn. Then $\angle RQS$ is an exterior angle of $\Box RQP$.

$$m \angle PRQ + m \angle P = m \angle RQS$$

$$\Rightarrow m \angle P = m \angle RQS - m \angle PRQ$$

$$\Rightarrow m \angle P = \frac{1}{2} mRS - \frac{1}{2} mQT$$

$$\Rightarrow m \angle P = \frac{1}{2} \left(mRS - mQT \right)$$

For each pair of lines, a tangent and a secant, two secants, an two tangents, the steps necessary to prove the following theorem have been given:

Theorem 3: The measure of an angle formed by a tangent and a secant, two secants, two secants, or two tangents intersecting outside the circle is equal to one half the difference of the measures of the intercepted arcs.

$$m\angle DAC = \frac{1}{2} \left(mDE - mBC \right)$$

$$m \angle DAC = \frac{1}{2} \Big(mDC - mBC \Big)$$

$$m \angle DAC = \frac{1}{2} \left(mDC - mBC \right)$$
 $m \angle BAC = \frac{1}{2} \left(mBDC - mBC \right)$

Check the summary table below:

Type of Angle	Degree Measure	Example
Formed by a Tangent and a Chord	The measure of an angle by a tangent and a chord that intersect at the point of tangency is equal to one – half the measure of the intercepted arc.	$m \angle 1 = \frac{1}{2} mAB$
Formed by Two Intersecting Chords	The measure of an angle formed by two intersecting chords is equal to one – half the sum of the measure of the arcs intercepted by the angle and its vertical angle.	$m \angle 1 = \frac{1}{2} \left(mAB + mCD \right)$ $m \angle 2 = \frac{1}{2} \left(mAB + mCD \right)$

Formed by Tangents and Secants

The measure of an angle formed by a tangent and a secant, two secants, or two tangents intersecting outside the circle is equal to one – half the difference of the measures of the intercepted arcs.

$$m \angle 1 = \frac{1}{2} \left(mAB - mAC \right)$$
$$m \angle 2 = \frac{1}{2} \left(mAB - mCD \right)$$
$$m \angle 3 = \frac{1}{2} \left(mACB - mAB \right)$$