## Angles Formed by Tangents, Chords, and Secants

In the diagram, $\overrightarrow{A B}$ is tangent to the circle of center O at A , $\overline{A D}$ is a chord, and $\overline{A C}$ is a diameter. When $\overline{C D}$ is drawn, $\angle A D C$ is a right angle because it is an angle inscribed in a semicircle, and $\angle A C D$ is the complement of $\angle C A D$. Also, $\overline{C A} \perp \overline{A B}, \angle B A C$ is a right angle, and $\angle D A B$ is the complement of $\angle C A D$. Therefore, since complements of the same angle are congruent, $\angle A C D \cong \angle D A B$.

We can conclude that since $m \angle A C D=\frac{1}{2} m A D$, then
 $m \angle D A B=\frac{1}{2} m A D$

Theorem 1: The measure of an angle formed by a tangent and a chord that intersect at the point of tangency is equal to one - half the measure of the intercepted arc.

## Angles Formed by Two Intersecting Chords

Two chords $\overline{A B}$ and $\overline{C D}$ intersect in the interior of the circle with center O and $\overline{D B}$ is drawn. $\angle A E D$ is an exterior angle of $\square D E B$. Therefore,

$$
\begin{aligned}
m \angle A E D & =m \angle B D E+m \angle D B E \\
& =\frac{1}{2} m B C+\frac{1}{2} m D A \\
& =\frac{1}{2}(m B C+m D A)
\end{aligned}
$$


$B C$ is the arc intercepted by $\angle B E C$ and $D A$ is intercepted by $\angle A E D$, the angle vertical to $\angle B E C$.
Theorem 2: The measure of an angle formed by two chords intersecting within a circle is equal to one - half the sum of the measures of the arcs intercepted by the angle and its vertical angle.

$$
\begin{aligned}
& m \angle 1=\left(\frac{m A C+m D B}{2}\right) \\
& m \angle 2=\left(\frac{m A D+m B C}{2}\right)
\end{aligned}
$$



## Mathelpers

## Angles Formed by Tangents and Secants

We will study in this section three cases:
1- Angles formed by two tangents
2- Angles formed by a tangent and a secant
3- Angles formed by two secants
All of the angles formed in each of the three cases have vertices outside the circle, are related to the measures of the intercepted arcs.

## 1- Angles formed by two tangents

$\overleftrightarrow{P R S}$ is tangent to the circle of center O at $\mathrm{R}, \overleftrightarrow{P Q}$ is tangent to the circle at Q , and T is a point on the major $\operatorname{arc} R Q$. Chord $\overline{R Q}$ is drawn. Then $\angle S R Q$ is an exterior angle of $\square R Q P$.

$$
\begin{aligned}
& m \angle P Q R+m \angle P=m \angle S R Q \\
& \Rightarrow m \angle P=m \angle S R Q-m \angle P Q R \\
& \Rightarrow m \angle P=\frac{1}{2} m R T Q-\frac{1}{2} m R Q \\
& \Rightarrow m \angle P=\frac{1}{2}(m R T Q-m R Q)
\end{aligned}
$$



## 2- Angles formed by a tangent and a secant

$\overleftrightarrow{P R S}$ is tangent to the circle of center O at $\mathrm{R}, \overleftrightarrow{P T Q}$ is a secant that intersects the circle at Q and T . Chord $\overline{R Q}$ is drawn. Then $\angle S R Q$ is an exterior angle of $\square P R Q$.

$$
\begin{aligned}
& m \angle R Q P+m \angle P=m \angle S R Q \\
& \Rightarrow m \angle P=m \angle S R Q-m \angle R Q P \\
& \Rightarrow m \angle P=\frac{1}{2} m R Q-\frac{1}{2} m R T \\
& \Rightarrow m \angle P=\frac{1}{2}(m R Q-m R T)
\end{aligned}
$$



## 3- Angles formed by two secants

$\overleftrightarrow{P T R}$ is a secant to the circle of center O that intersects the circle at R and $\mathrm{T}, \overleftrightarrow{P Q S}$ is a secant that intersects the circle at Q and S . Chord $\overline{R Q}$ is drawn. Then $\angle R Q S$ is an exterior angle of $\mid R Q P$.

$$
\begin{aligned}
& m \angle P R Q+m \angle P=m \angle R Q S \\
& \Rightarrow m \angle P=m \angle R Q S-m \angle P R Q \\
& \Rightarrow m \angle P=\frac{1}{2} m R S-\frac{1}{2} m Q T \\
& \Rightarrow m \angle P=\frac{1}{2}(m R S-m Q T)
\end{aligned}
$$



For each pair of lines, a tangent and a secant, two secants, an two tangents, the steps necessary to prove the following theorem have been given:

Theorem 3: The measure of an angle formed by a tangent and a secant, two secants, two secants, or two tangents intersecting outside the circle is equal to one half the difference of the measures of the intercepted arcs.


## Check the summary table below:

| Type of Angle | Degree Measure |  |
| :--- | :--- | :--- |
| Formed by a <br> Tangent and a <br> Chord | The measure of an angle by a <br> tangent and a chord that intersect <br> at the point of tangency is equal <br> to one - half the measure of the <br> intercepted arc. |  |
| Formed by Two <br> Intersecting <br> Chords | The measure of an angle formed <br> by two intersecting chords is <br> equal to one - half the sum of the <br> measure of the arcs intercepted <br> by the angle and its vertical angle. | $m \angle 1=\frac{1}{2}(m A B+m C D)$ |


| Formed by Tangents |  |
| :--- | :--- |
| and Secants | The measure of an angle <br> formed by a tangent and a <br> secant, two secants, or two <br> tangents intersecting outside <br> the circle is equal to one - half <br> the difference of the measures <br> of the intercepted arcs. |
| $m \angle 1=\frac{1}{2}(m A B-m A C)$ |  |
| $m \angle 2=\frac{1}{2}(m A B-m C D)$ |  |
| $m \angle 3=\frac{1}{2}(m A C B-m A B)$ |  |

