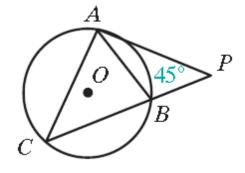
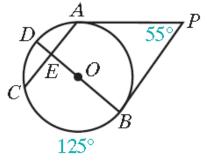
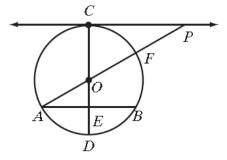
Name:

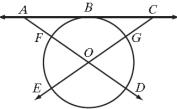

Angles Formed by Tangents, Chords, and Secants


Exercise 1: In the diagram \overrightarrow{PA} and \overrightarrow{PB} are tangent to the circle of center O at A and B respectively. Diameter \overline{BD} and chord \overline{AC} intersects at E, $mCB = 125^{\circ}$ and $m \angle P = 55^{\circ}$. Find:

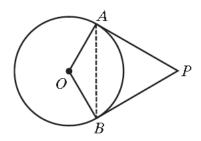
- 1) *mAB*
- 2) *mAD*
- 3) *mCD*
- 4) *m∠DEC*
- 5) $m \angle PBD$
- 6) *m∠PAC*
- 7) Show that \overline{BD} is perpendicular to \overline{AC} and bisects \overline{AC}

Exercise 2: Tangent segment \overline{PA} and secant segment \overline{PBC} are drawn to the circle of center O. \overline{AC} and \overline{AB} are chords. If $m \angle P = 45^{\circ}$ and mAC : mAB = 5:2, find:

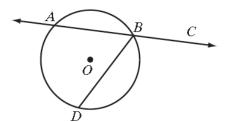

- 1) *mAC*
- 2) *mBC*
- 3) *m∠ACB*
- 4) *m∠PAB*
- 5) *m∠CAB*


6) *m∠PAC*

Exercise 3: Tangent \overrightarrow{PC} intersects the circle of center O at C, $\overrightarrow{AB} \Box \overrightarrow{CP}$, diameter \overrightarrow{COD} intersects \overrightarrow{AB} at E, and diameter \overrightarrow{AOF} is extended to P.



- 1) Prove that: $\Box OPC \Box \Box OAE$
- 2) If $m \angle OAE = 30^{\circ}$, find mAD, mCF, mFB, mBD, mAC, and $m \angle P$


Exercise 4: Tangent \overrightarrow{ABC} intersects the circle of center O at B, secant \overrightarrow{AFOD} intersects the circle at F and D, and secant \overrightarrow{CGOE} intersects the circle at G and E. If mEFB = mDGB, prove that $\Box AOC$ is an isosceles triangle.

Exercise 5: Segments \overline{AP} and \overline{BP} are tangent to the circle of center O at A and B, respectively, and $m \angle AOB = 120^{\circ}$. Prove that $\Box ABP$ is an equilateral triangle.

Exercise 6: Secant \overline{ABC} intersects a circle at A and B. Chord \overline{BD} is drawn. Prove that $m \angle CBD \neq \frac{1}{2}mBD$

Mathelpers.com

Grade 10