Name:

\qquad

Angles Formed by Tangents, Chords, and Secants

Exercise 1: In the diagram $\overleftrightarrow{P A}$ and $\overleftrightarrow{P B}$ are tangent to the circle of center O at A and B respectively. Diameter $\overline{B D}$ and chord $\overline{A C}$ intersects at $\mathrm{E}, m C B=125^{\circ}$ and $m \angle P=55^{\circ}$. Find:

1) $m A B$
2) $m A D$
3) $m C D$
4) $m \angle D E C$

5) $m \angle P B D$
6) $m \angle P A C$
7) Show that $\overline{B D}$ is perpendicular to $\overline{A C}$ and bisects $\overline{A C}$

Exercise 2: Tangent segment $\overline{P A}$ and secant segment $\overline{P B C}$ are drawn to the circle of center $\mathrm{O} \cdot \overline{A C}$ and $\overline{A B}$ are chords. If $m \angle P=45^{\circ}$ and $m A C: m A B=5: 2$, find:

1) $m A C$
2) $m B C$
3) $m \angle A C B$

4) $m \angle P A B$
5) $m \angle C A B$
6) $m \angle P A C$

Exercise 3: Tangent $\overleftrightarrow{P C}$ intersects the circle of center O at $\mathrm{C}, \overline{A B} \square \stackrel{\rightharpoonup}{C P}$, diameter $\overline{C O D}$ intersects $\overline{A B}$ at E , and diameter $\overline{A O F}$ is extended to P .

1) Prove that: $\square O P C \square \square O A E$
2) If $m \angle O A E=30^{\circ}$, find $m A D, m C F, m F B, m B D, m A C$, and $m \angle P$

Exercise 4: Tangent $\overleftrightarrow{A B C}$ intersects the circle of center O at B , secant $\overleftrightarrow{A F O D}$ intersects the circle at F and D , and secant $\overrightarrow{C G O E}$ intersects the circle at G and E . If $m E F B=m D G B$, prove that $\square A O C$ is an isosceles triangle.

Exercise 5: Segments $\overline{A P}$ and $\overline{B P}$ are tangent to the circle of center O at A and B , respectively, and $m \angle A O B=120^{\circ}$. Prove that $\square A B P$ is an equilateral triangle.

Exercise 6: Secant $\overline{A B C}$ intersects a circle at A and B . Chord $\overline{B D}$ is drawn. Prove that $m \angle C B D \neq \frac{1}{2} m B D$

