Absolute Value Equations

Definition 1:: If x is a real number, then $|x|$ is called the absolute value of x and it is the distance between x and 0 .

For example, $|0|=0,|3|=3 \&|-5|=5$

Now consider the distance between -2 and 3 is either $|3-(-2)|=|5|=5$. Thus if a and b are any two numbers, then $|a-b|=|b-a|$

Many equations and inequalities involving absolute values can be solved using this geometric aspect of absolute value .

Solving equations: To solve an equation involving absolute value
i. Isolate the absolute value one side of the equation.
ii. Set its contents equal to both + and - the other side of the equation.
iii. Now solve both equations.

Example 1: Solve
$2|x|+5=8$
Solution: i) Isolating absolute value as
$2|x|+5=8$
$2|x|+5-5=8-5$
$2|x|=3$
$|x|=\frac{3}{2}$
ii) Set the contents of the absolute value equal to $+\frac{3}{2}$ and $-\frac{3}{2}$
i. e. $x=+\frac{3}{2}$ and $x=-\frac{3}{2}$

Example 2: Solve: $6|2 x+3|-5=13$
i) Isolate the absolute value as
$6|2 x+3|-5=13$
$6|2 x+3|=18$
$|2 x+3|=3$
ii) Setting the contents of the absolute value equal to +3 and -3 we get,
$2 x+3=3$ and $2 x+3=-3$
$2 x=0 \quad$ and $\quad 2 x=-6$
$x=0 \quad$ and $\quad x=-3$
$x=0$ and $x=-3$

Example 3: Solve: $7|4 x-1|=0$

$$
\begin{aligned}
& 7|4 x-1|=0 \\
& \Rightarrow|4 x-1|=0 \\
& \Rightarrow 4 x-1=0 \\
& \Rightarrow 4 x=1 \\
& \Rightarrow x=\frac{1}{4}
\end{aligned}
$$

Example 4: Solve: $2|x+3|+4=2$ if possible

$$
\begin{aligned}
& 2|x+3|+4=2 \\
& \Rightarrow 2|x+3|=2-4 \\
& \Rightarrow 2|x+3|=-2 \\
& \Rightarrow|x+3|=-1
\end{aligned}
$$

Look carefully at the equation $|x+3|=-1$. The absolute value of any number is greater or equal to zero, so how can we obtain a result of -1 ?
Therefore, $|x+3|=-1$ is impossible. There is no solution for $2|x+3|+4=2$
Example 5: Solve: $|2 x-4|=|4 x-16|$ if possible

$$
\begin{array}{lll}
|2 x-4|=|4 x-16| & & \\
\Rightarrow 2 x-4=4 x-16 & \text { and } & 2 x-4=-(4 x-16) \\
\Rightarrow-2 x=-12 & \text { and } & 6 x=20 \\
\Rightarrow x=6 & \text { and } & x=\frac{10}{3}
\end{array}
$$

Example 6: Solve $|4+x|-2 x=7-5 x$.
$|4+x|=7-3 x$
add $2 x$ to isolate
$4+x=7-3 x \quad$ or $\quad-(4+x)=7-3 x \quad$ separate into 2 equations
$4+4 x=7 \quad-4-x=7-3 x \quad$ solve each equation
$4 x=3 \quad-4+2 x=7$
$x=3 / 4$
$2 x=11$
$x=11 / 2$

CHECK:

$$
\begin{aligned}
& \text { for } x=\frac{3}{4}\left|4+\frac{3}{4}\right|-2\left(\frac{3}{4}\right)=7-5\left(\frac{3}{4}\right) \\
& \left|\frac{19}{4}\right|-\frac{3}{2}=7-\frac{15}{4} \\
& \frac{19}{4}-\frac{3}{2}=7-\frac{15}{4} \\
& \frac{13}{14}=\frac{13}{14} \\
& \text { for } x=\frac{11}{2},\left|4+\frac{11}{2}\right|-2\left(\frac{11}{2}\right)=7-5\left(\frac{11}{2}\right) \\
& \begin{aligned}
\left|\frac{19}{2}\right| & -11=7-\frac{55}{2} \\
-\frac{3}{2} & \neq-\frac{41}{2} \quad \text { Therefore, } \frac{11}{2} \text { is not part of your solution. }
\end{aligned}
\end{aligned}
$$

The final solution is $x=3 / 4$.
Example 7: Solve $9-|x-2|=7$
$9-|x-2|=7$
$9-7=|x-2|$
$2=|x-2|$
$|x-2|=2$
$(x-2)=2 \quad$ or $\quad(x-2)=-2$
$x=4$
$x=0$

